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ABSTRACT
Data labels in the security field are frequently noisy, limited, or
biased towards a subset of the population. As a result, commonplace
evaluation methods such as accuracy, precision and recall metrics,
or analysis of performance curves computed from labeled datasets
do not provide sufficient confidence in the real-world performance
of the model. In the industry today, we rely on domain expertise
and lengthy manual evaluation to build this confidence before ship-
ping a new model for security applications. This has slowed the
adoption of machine learning in the field. In this paper, we intro-
duce Firenze, a novel framework for comparative evaluation of ML
models’ performance using domain expertise, encoded into scalable
functions called markers. We show that markers computed and
combined over select subsets of samples called regions of interest
can provide a strong estimate of their real-world performances.
Critically, we use statistical hypothesis testing to ensure that ob-
served differences—and therefore conclusions emerging from our
framework—are larger than those observable from noise alone.
Using simulations and two real-world datasets for malware and
domain-name-service reputation, we illustrate the effectiveness,
limitations, and insights achievable with our approach. Taken to-
gether, we propose Firenze as a resource for fast, interpretable, and
collaborative model development and evaluation by mixed teams
of researchers, domain experts, and business owners.
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1 INTRODUCTION
Machine learning for information security is of growing interest in
both academia and industry [3, 6, 14, 18, 24, 28, 32]. In many cases,
data abound but domain-expert labels or annotations for those
data are uniquely expensive [15], reliable evaluation of a machine
learning model’s performance is challenging [16, 21, 31, 35] and
subject to concept drift, label drift, and covariate shift [5, 23, 30].
When developing models for use in production environments from
such restrictive datasets, how can we determine whether a newly-
developed model will actually perform better than existing methods
when deployed? This remains a barrier to the productionization of
machine learning models to solve real-world problems [31].

As a result, reliable evaluation of ML models in information se-
curity has required extensive manual investigations by qualified
experts with highly specialized training. In this paper, we present
Firenze, a novel model evaluation framework to automate this inves-
tigative process by scalably operationalizing their domain expertise
into signals, and using these to compare models’ performances
without ground-truth labels. Our goal is to accelerate the iterative
development process of machine learning models, and empower a
collaborative workflow between research scientists, domain experts,
and business owners solving emergent problems in information
security.

Firenze encodes domain expertise into a set of binary rules, called
markers. These markers collectively and scalably represent bench-
marks, heuristics, and/or knowledge that would be used by domain
experts during manual investigations of the outcomes of an ML-
based model. We apply these markers to a [unlabeled] test dataset
to make principled judgments of the performance of that model
with respect to some existing methods. Specifically, we measure
how much higher and lower it is able to rank datapoints associated
with malicious and benign markers resp., compared to those other
methods; using statistical hypothesis tests on specific regions of
the test dataset, that indicate when a proposed model is better than,
worse than, or not different than existing methods. By construction,
the results from each individual marker readily provide a semantic
understanding of why, how, and on which data model improve-
ments or deteriorations are occurring. As a result, Firenze provides
a nuanced picture of the comparative model performance along
with the overall judgment of which model is more performant.

In Section 2, we review related work. In Section 3, we describe
Firenze. In Section 4, we present a case-study application of our
approach to an opensource dataset and Section 5 describes a com-
panion study on a real world dataset. In Section 6, we discuss future
directions and opportunities.

2 RELATEDWORK
Evaluation of machine learning models in the security literature
broadly uses canonical metrics like accuracy, precision, and recall
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on labeled data [31], but such approaches can be inaccurate or
limited for data with partial labels, noisy labels, or no labels at all
[12, 23, 27]. In turn, there is a growing emphasis on using real-
world and/or high-quality datasets [2, 29] and seeking explainable,
semantic understanding of model outcomes [4].

Naively, one could improve the quality of evaluative metrics like
these by obtaining reliable ground truth labels, e.g. with large-scale
crowdsourcing campaigns [20] on Mechanical Turk (or similar ser-
vices) [8]. However, such efforts do not scale to specialized labeling
tasks like those in information security, which require investiga-
tions by a select few domain experts with rigorous training and ex-
perience [15]. Even expert data aggregators like VirusTotal or threat
intelligence feeds—and their [trusted] usage for data labeling—have
been scrutinized recently [17, 35].

The nascent field of weak supervision has emerged in response
to this problem of intractable, costly, and/or imprecise data labeling
[25]. The Snorkel project [26] introduced so-called labeling func-
tions to generate training datasets based on weak domain expert
signals, and has been adopted for real-world problems including
security to remove the human labeling problem [1, 33]. All of the
methods discussed thus far augment the training process in some
way; we propose Firenze as a black-box method that can directly
evaluate an already-trained model without retraining.

Directly targeting model evaluation, AutoEval [10] and density
estimation [22] can estimate the accuracy of a classifier on an unla-
beled dataset by using feature statistics from the training set and
synthetic datasets generated by applying transformations to the
training set. Most recently, Joyce et al. [15] define Approximate
Ground Truth Refinements (AGTRs) using cluster memberships,
which are used to estimate bounded precision and recall in clus-
tering and multi-class algorithms. Though this approach can be
used to evaluate models, the authors acknowledge its limitations in
comparing models of different mechanical natures since they will
naturally correlate to different degrees with the biases of the AGTR
construction itself.

To the best of our knowledge, Firenze is the first system of its
kind to utilize weak signals (markers), to perform comparative
evaluation of the effectiveness of machine learning models. Our
approach is generalizable to various types of models including
supervised, semi-supervised, and unsupervised. We describe its
particulars in the next section.

3 FIRENZE: MODEL EVALUATION USING
WEAK SIGNALS

Firenze is a framework for pairwise, comparative model evaluation
utilizing weak signals for both supervised (e.g. classification of
malicious vs. benign domain names) and unsupervised score-based
models (e.g. anomaly detection). Firenze also uses domain expert
weak signals to describe semantically how a model is performing
outside of ground-truth labels, addressing recurring concerns of
ML models in information security [31]. At a high level, our goal is
to compare an existing model (i.e. one in production, Reference
Model) with a newly built model (Test Model). Firenze features
the following components, as summarized in Figure 1.

These constituent parts evaluate and compare twomodels, which
we denote Model 𝑅 (or Reference Model) and Model𝑇 (or Test Model).

These models need only share a common goal/task, e.g. classifying
malware or domain names; they may differ in feature representa-
tions of their input data, model architectures, etc. Critically, Firenze
performs its evaluations strictly on the output scores of these mod-
els. Such a black-box treatment of these models permits fast, easy
incorporation into [existing] research pipelines and well-posed
comparisons of diverse models.

3.1 Marker design and combination
A marker is a weak signal that is associated with the malicious-
ness or benignity of a sample, instance, or event. The weak signal
can come from diverse sources, patterns, heuristics and external
knowledge bases that operationalize a security expert’s intuition
of whether a sample is malicious or not. These intuitions may not
be correct for every individual case, but broadly hold true for the
population. For examples, see Figure 1, inset.

We define𝑀 marker functions𝑚1, ...,𝑚𝑀 where𝑚 𝑗 (𝑠) indicates
the verdict of the 𝑗𝑡ℎ marker (if any) observed for a sample 𝑠 . Mark-
ers’ verdicts span𝑚 𝑗 (𝑠) ∈ {−1, 0, 1}, where −1 indicates that the
marker voted the sample 𝑠 to be benign, 1 indicates malicious and 0
indicates that the marker abstains. Allowing markers to abstain is
important as the opposite of a security expert’s intuition does not
always indicate a vote for the opposite class. By design, a single
marker may not give a conclusive verdict for a sample’s malicious-
ness or benignness; however, a combination of many such markers
can provide a stronger overall verdict, and emulate how human
experts build confidence and make inferences. To aggregate in-
dividual markers, we define the combined marker score as their
majority vote, which itself can “abstain” with 0 for ties. While this
is a naive method, past research has shown that in use cases with
low signal density (like ours) there is limited room for even an
optimal weighting of the signals to diverge much from the majority
vote [26]. More sophisticated aggregation based on Dawid-Skene
estimators [9] or generative models are planned for future work.

Over the subsets/regions of samples considered below, we calcu-
late the average marker score of the samples in a given set, denoted
𝑍 (𝑅) and 𝑍 (𝑇 ) for models 𝑅 and𝑇 resp.. Intuitively, if a set contains
more samples that are likely malicious, its average marker score
will be greater, and vice versa for fewer samples.

3.2 Region-based hypothesis testing
ML models in the security domain generally seek a robust separa-
tion of malicious and benign samples, but may only use a limited
range of their operation. For example, a domain name reputation
model may score millions of unique domain names per day, but only
a small [fixed-size] subset of those will be sufficiently [confidently]
benign to allowlist. Consequentially, which samples a model places
in such regions of interest becomes instrumental its real-world per-
formance. Samples for which the assigned “region” changes from
one model to the next grants evaluative information about the com-
parative performance of the two models. Therefore, we propose to
perform comparative evaluation on three regions of interest of size
𝐾 : one each to explore the “most malicious” samples, “most benign”
samples, and most differently-scored samples; other such regions
may exist for use-cases not considered here.
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Figure 1: An overview of the Firenze system. (1) A domain expert defines the marker functions. (2) Create ranked lists of the
samples by each model. (3) Assign samples to regions of interest. (4) Calculate the average marker score per set. (5) For the
two sets in each region of interest, determine the better model by comparing the average marker scores using a two-sample
unequal-variance t-test. Inset: Examples of marker functions for applications of ML in security

For each model, these regions are defined by their output scores
𝑝 = Model(𝑠) assigned to input samples from a test dataset, which
reflects some confidence that each sample belongs to the malicious
or benign class. These scores need not be comparable directly across
models, i.e. SVM margin scores or class probabilities. Instead, we
sort samples by their scores in each model, such that samples’ ranks
are comparable across models. Across a set of [unlabeled] test data,
we can associate each sample with (i) its rank score and (ii) its
marker score. These two scores define Firenze’s tests:

• Top-𝐾 Test: We hypothesize that, within the top-𝐾-ranked sam-
ples by model score for some 𝐾 , the test model is better than the
reference model if it assigns more likely malicious samples and
fewer likely benign samples to this region. This is tantamount to
testing whether 𝑍 (𝑇 ) > 𝑍 (𝑅), i.e. whether Model 𝑇 has a higher
average marker score in this region.

• Bottom-𝐾 Test: Conversely, we hypothesize that, within the
bottom-𝐾-ranked samples by model score for some 𝐾 , the test
model is better than the reference model if it assigns more likely
benign samples and fewer likely malicious samples to this region.
Likewise, we test whether 𝑍 (𝑇 ) < 𝑍 (𝑅), i.e. whether Model 𝑇
has a lower average marker score in this region.

• Movers Test: We hypothesize that the test model is better than
the reference model if it assigns more malicious (as defined by
marker score) samples to higher ranks (as defined by model
score), and more benign samples to lower ranks. Specifically, for
some 𝐾 , we use model scores to select the 𝐾 samples with largest
increase in rank from Model 𝑅 to Model 𝑇—“up-movers”—and

the 𝐾 samples with largest decrease—“down-movers”. Then, we
test 𝑍 (𝑈 ) > 𝑍 (𝐷), i.e. whether the average marker score of
up-movers is higher than that of down-movers.
For each of the Top-K, Bottom-K, and Movers Tests, we compare

the average marker scores of the samples placed in each region by
Models R and T using a two-sample t-test with unequal variance
at level 0.05 [34]. This permits us to observe and interpret differ-
ences in 𝑍 (𝑅) and 𝑍 (𝑇 ) sensitive to variability in these estimates,
only if we can exclude the uninformative statistical possibility that
the observed differences arose by random chance between equally
performant models (probability 𝑝 ≤ 0.05). In practice, we run these
statistical tests as two-sided tests of whether 𝑍 (𝑇 ) ≠ 𝑍 (𝑅) and
𝑍 (𝑈 ) ≠ 𝑍 (𝐷); in doing so, we can also identify when the test
model is worse than the reference model, by the same hypotheses.

Assessing Firenze using simulated data. To demonstrate Firenze on
data and models with known ground-truth labels, we developed an
extensive simulated environment that parametrizes and partitions
relevant sources of noise endemic to a model training-and-testing
pipeline. Details of the generative process, results, and insights are
shared in Appendix A.

4 EVALUATING MALWARE DETECTION
MODELS USING FIRENZE

To illustrate how Firenze can be used in practice, we share a case
study as a replicable proof-of-concept comparing two models for
ML-based malware detection, which use the EMBER open-source
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malware dataset [2]. The EMBER dataset is a curated set of mali-
cious and benign Windows PE files for static analysis. The feature
representation of these data spans file headers, sections, directories,
imports and exports, and byte entropies.

To construct an ecologically valid case study, we sort the EMBER
data by the date/time at which each sample was first observed, to
train our reference and test models on “past” data (pre-December
2017), perform preliminary tests on “present” data (December 2017),
and evaluate with Firenze on “future” data (2018) [23]. We specifi-
cally use the unlabeled samples from the 2018 period. The reference
model is a neural network classifier with the same architecture of
Erdemir et al. in their experiments with the EMBER dataset [11]).
The test model is a gradient-boosted decision tree with the same
hyperparameters of Anderson et al. in the EMBER paper [2].

On “present” data, performances of the reference and test models
appear highly comparable (AUC𝑅 = 0.9981 versus AUC𝑇 = 0.9984).
Using Firenze on the future dataset, we investigate to what extent
the test model architecture achieved our goals to (i) increase true
malicious file identifications (true positives) by the model without
increasing false positives and (ii) increase benign file detection
without increasing false negatives.

We designed five markers to evaluate these models; we outline
them here, and discuss the relevant background information and
domain expertise that motivated them in Appendix B.
• Suspicious Section Properties: If sample contains more than
one executable or any writable-and-executable section, then 1,
else 0

• Unusual Number of Imported Funtions: If sample contains
fewer than 25 imports—less than the usual packed sample—then
1, else 0

• Nonsensical Section Names: If sample contains a nonsensical
section name, as determined by nostril [13], then 1, else 0

• Import of suspicious functions: If sample imports functions
and libraries associated with common malicious functionality
(see Appendix B.2 for details), then 1, else 0

• Signed: If sample is signed by a trusted source, then −1, else 0
Consider the secondmarker, unusual number of imports, and how it
reflects our definition of markers as weak signals. Though very few
imports—common for packed/obfuscated samples—is a good signal
of suspiciousness, numerous imports is not a signal of legitimacy
by negation. Likewise, many malicious samples aren’t packed, and
could contain any number of imports.

Region-based hypothesis testing with Firenze is mechanistically
amenable to malware detection. Suppose our models’ predictions
are triaged by a security operations teamwith a limited investigative
bandwidth of 𝐾 detections per day to build an allowlist (benign
verdicts) or blocklist (malicious verdicts). If that value 𝐾 = 50k, it
would be sensible to evaluate model performance only over that
region within which impactful security decisions are made. We
apply Firenze to evaluate our two malware detectors on regions
of 50k samples, e.g. for a blocklist (Top-𝐾), allowlist (Bottom-𝐾),
or investigative list (Movers). The reference and test models are
pretrained, and we report the outcomes of Firenze’s region-based
hypothesis tests in Table 1 below. Each table reports their combined
marker scores 𝑍 (·) (abbrev. CMS) on each region and the 𝑝-value of
the t-test that tests each hypothesis by which the test model would
be better than the reference model (or the reference better than the

test; see Section 3.2). We summarize the outcome of each test with
an S (Success) to show "test model out-performs reference model"
(𝑝 ≤0.05), an F (Failure) to show "reference model out-performs test
model" (𝑝 ≤0.05 for the opposite outcome), and a U (Undetermined)
to show an inconclusive outcome (𝑝 >0.05).

We see that all of the Top-K, Bottom-K, and Movers tests succeed,
i.e. the test model is uniformly better at scoring malicious and
benign samples, as well as moving malicious/benign samples to
higher/lower ranks. These results are more granular and therefore
trustworthy than miniscule differences in AUC on labeled data,
such that a security expert could deploy the test model, citing
interpretable regimes of performance improvement.

The EMBER dataset presents two explicit opportunities to verify
conclusions drawn from Firenze’s tests. First, because the dataset
also contains 800k labeled samples from the 2018 period, we can
verify with classical metrics that the test model is, indeed, out-
performing the reference model significantly (AUC𝑅 = 0.9166 ver-
sus AUC𝑇 = 0.9371), though both show degredation of performance
over time. Second, because we could manually retrieve VirusTotal
reports and EMBER labels [2] on these once-unlabeled samples
now—four years later—we can verify our conclusions once more
(Accuracy𝑅 = 0.90 versus Accuracy𝑇 = 0.94).

Test Avg CMS Avg CMS p-value Result
Reference Model Test Model

TopK Test, 50k 0.11456 0.68445 <10-16 S
BottomK Test, 50k 0.09788 -0.16862 <10-16 S

Test Avg CMS Avg CMS p-value Result
Up-Movers Down-Movers

Movers Test, 50k 0.42884 0.00868 <10-16 S

Table 1: Outcomes of Firenze’s evaluative comparison of ref-
erence and test malware detection models with the Top-K,
Bottom-K, and Movers tests for 𝐾 = 50k

5 EVALUATING DOMAIN NAME REPUTATION
MODELS USING FIRENZE

We follow up with a second case study from a mature real-world
use-case comparing twomodels for domain name reputation, which
use fully anonymized passive DNS data obtained from a large cloud
service provider. The exact details of these models are not the focus
of this paper, but can be assumed similar to previous related work
in this space [3, 6, 18, 24].

These domain name reputation models are used to identify ma-
licious domains for threat detection as well as benign domains
for false positive mitigation. The reference model is an already-in-
use production version of the model. The test model is a proposed
update to the model which adds additional features. Both models
would score as many as one billion domains per day, but are only
trained on a few million domains with known labels. This large
discrepancy makes model improvements difficult to evaluate, since
precision and recall across model versions compared to labels stays
relatively stable (here, the test model scores slightly better; area
under the ROC curve AUC𝑅 = 0.98387 versus AUC𝑇 = 0.98527).
Using Firenze on all domains, we investigate to what extent the
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new feature addition achieved our goals to (i) increase true mali-
cious domain identifications (true positives) by the model without
increasing false positives and (ii) improve identification of benign
domains without increasing false negatives.

We designed seven markers to evaluate these models; we outline
them here, and discuss the relevant background information and
domain expertise that motivated them in Appendix C.
• Abused Domain: If the domain is associated with a curated list
of known-abused domains, then 1, else 0

• Sinkholed Domain: If the domain is associated with a curated
list of known-sinkhole IP addresses, then 1, else 0

• Honeypot Domain: If the domain appears in in-house honeypot
logs, then 1, else 0

• Domain Popularity: If the domain is considered popular based
on query counts, then −1, else 0

• Number of IPs: If the domain maps to more than 50 unique IP
addresses, then −1, else 0

• Number of TTLs: If the domain appears with more than 500
TTLs (Time to Live), then −1, else 0

• Known Future Label: If the domain is labeled malicious in the
future labels, then 1, if it is labeled benign, then −1, else 0
Region-based hypothesis testing with Firenze is mechanistically

amenable to the domain-name reputation problem as well. Anal-
ogously, suppose we applied Firenze to evaluate our two domain-
name reputation models on regions with 𝐾 = 10k or 100k samples.
The reference and test models are pretrained, and we report the
outcomes of Firenze’s region-based hypothesis tests In Table 2
below.

In Table 2, we first see that both Top-K tests fail, i.e. the test model
is worse than the reference model at scoring malicious domains,
but both Bottom-K tests succeed, i.e. it is better at scoring benign
domains. The Movers test fails for 10k and is inconclusive for 100k,
i.e. the test model does not move malicious samples to higher ranks,
and benign samples to lower ranks.We explicitly note that “Success”
and “Failure”, as noted in the tables, qualifies whether the test model
successfully outperforms the reference model. Overall, we conclude
that we failed to develop a better model, but succeeded in identifying
it so with Firenze.

Test Avg CMS Avg CMS p-value Result
Reference Model Test Model

TopK Test, 10k 0.617138 0.516348 <10-16 F
TopK Test, 100k 0.570214 0.405806 <10-16 F
BottomK Test, 10k -0.5795 -0.9835 <10-16 S
BottomK Test, 100k -0.54655 -0.67804 <10-16 S

Test Avg CMS Avg CMS p-value Result
Up-Movers Down-Movers

Movers Test, 10k 0.0026 0.0074 0.011 F
Movers Test, 100k 0.00036 0.00016 0.296 U

Table 2: Outcomes of Firenze’s evaluative comparison of ref-
erence and test domain name reputation models with the
Top-K, Bottom-K, and Movers tests for 𝐾 = 10k and 100k

Using traditional metrics over labeled data like AUC above, we
observed that the test model was doing marginally better. But, with
Firenze, we reveal a more nuanced picture of better benign detec-
tion and worse malicious detection, which reflects the plausible

situation in which one model is not uniformly better than another;
instead, they each have regimes in which they perform better or
worse. The granularity of these insights are what a security expert
would need to recommend that a business owner not ship the new
model, citing likely false negatives for a customer. Defining markers
and regions helps identify these aspects of performance, automate
their evaluation with the robustness of statistical tests, and make
confident business decisions based on the outcomes.

6 DISCUSSION AND CONCLUSION
With this paper, we introduced Firenze as a modular, extensible
framework for post-hoc comparative model evaluation, that consti-
tutes a novel approach to the problem of learning from data with
noisy, unreliable, or absent labels. The framework also allows for
flexibility in defining bothmarkers and regions of interest to special-
ize performance [improvements] users want to measure. Once these
are implemented for a given use-case, they can be seamlessly reused
across arbitrary model refinements and changes—small hyperpa-
rameter adjustments or even complete architectural overhauls. In
all cases, each marker and test is explainable, and provides feedback
for targeted model refinements. We are optimistic that Firenze can
enable more holistic, collaborative ML model development for re-
search problems in information security by creating opportunities
for direct participation by security researchers and business owners,
as well as the usual ML scientists.

This said, Firenze does not remove the need to acquire labels;
high-quality labeled datasets remain the premier means to develop
effective models. Firenze gives comparative insights into model
performance, and cannot infer the absolute performance differences
that are achievable with fully labeled data. Moreover, these insights
hinges on the quality of markers designed by domain experts. We
suggest that effective applications of ML in the security domain
require both datasets with a high-quality [sub]set of labels for
model training, and improved evaluation methods (like Firenze) to
estimate improvement in performance on real-world data.

Future work includes exploring statistical techniques to move
from comparative analysis to singlemodel analysis including thresh-
old selection to achieve desired false positive rate; estimating un-
certainty of the outcome based on test parameters; and expansion
of statistical tests to explain how one model may be doing better.
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A METHODS AND RESULTS FOR SIMULATED
DATA EXPERIMENTS

To demonstrate Firenze on data and models with known ground-
truth labels, we developed an extensive simulated environment
that parametrizes and partitions relevant sources of noise endemic
to a model training-and-testing pipeline. Our goal is to study the
limitations with which Firenze can identify the better model with
the proposed region-based hypothesis tests. We will see that this is
a function of markers, and their relationship to other parameters
of this simulated environment. In specific contrast to real-world
datasets, only in simulations can we disambiguate between differ-
ences in objective, unobserved ground-truth labels and subjective,
observed training labels, and how these propagate to model perfor-
mance.

Key features of this simulation are (i) generation of ground-
truth labels as well as noisy generation of training labels and weak
signals (markers) of arbitrary accuracy and coverage (with respect
to ground-truth), and (ii) model score generation with arbitrary
performances with respect to either of the labelsets. With these
features, we explore the requirements of a single marker, knowing
that these results provide a lower bound on any other use-case.

A.1 Label and weak signal generation
Let 𝑦true ∈ {−1, 1} be the unobserved ground-truth label for a
sample 𝑠 , generated as a Bernoulli random variable with probabil-
ity/bias 𝜋 . Let 𝑚 ∈ {−1, 0, 1} be the weak label assigned to this
sample by a marker. The marker provides a noisy observation of
this ground-truth label generated as two more Bernoulli random
variables. The first determines whether the marker yields a label;
with probability/bias 𝛽 , the marker provides a label, otherwise a
null-value. The second determines whether the marker yields the
correct label; with probability/bias 𝛼 , the marker takes the actual
label 𝑦true, otherwise it flips it. Parametrized this way, 𝜋 defines
the prevalence of the positive class, 𝛽 defines the coverage of the
marker, and 𝛼 defines its accuracy. The resulting data-generating
process is given by

𝑚 | 𝑦true, 𝑎, 𝑏 =

{
𝑎 · 𝑦true

0
if 𝑏 = 1
otherwise (1)

𝑏 ∼ Bernoulli(𝛽) (2)
𝑎 ∼ Bernoulli(𝛼) (3)

𝑦true ∼ Bernoulli(𝜋) (4)

We simulate this process for each of the 𝑖 = 1, ..., 𝑁 samples 𝑠𝑖
and the single marker𝑚(𝑠𝑖 ). For this simulated environment, we
simulate a single marker, which emulates the most conservative
regime of the Firenze framework.

Let 𝑦 be the observed label used for model training. We can
simulate the same process for this label, subject to its own coverage
𝛽 and accuracy 𝛼 . By design, the accuracy of these labels is much
higher than that of any markers, 𝛼 ≫ 𝛼 𝑗 , but still subject to noise

and discrepancies from ground-truth labels:

𝑦 | 𝑦true =
{
𝑎 · 𝑦true

0
if 𝑏 = 1
otherwise (5)

𝑏 ∼ Bernoulli(𝛽) (6)
𝑎 ∼ Bernoulli(𝛼) (7)

Neither training labels nor model training are part of Firenze itself;
they are part of our simulation as a means to generate model scores
with fully specified performances in the next subsection. These
scores become the “input” to Firenze.

A.2 Model score generation
Let 𝑝 ∈ (0, 1) be the model score of a sample 𝑠 , and let 𝑦 = sign(𝑝 −
0.5) be a decision function that yields a class estimate from that
score. This estimate has an observed performance with respect to
the training [feed] labels, and an unobserved performance with
respect to the ground-truth labels.

We emulate the training process by generating scores as uniform
random variables, with model performance enforced by a Bernoulli
random variable with bias/probability 𝑃 . The uniform variable gen-
erates noise without affecting the class estimate, drawn between
(0, 0.49) if𝑦 = −1 and (0.51, 1) if𝑦 = 1; for samples without training
labels (𝑦 = 0), we use 𝑦true in its place. The Bernoulli variable deter-
mines whether the class estimate is correct; with probability/bias 𝑃 ,
the sample remains consistent with the ground-truth or training
label, otherwise it flips to the other half-interval. Parametrized this
way, 𝑃 defines the performance of the “trained” models; for models
𝑅 and𝑇 , across sampleswith a training label, we have performances
𝑃𝑅train and 𝑃𝑇train, and for samples without a training label, we have
𝑃𝑅true and 𝑃

𝑇
true. The resulting data-generating process—identically

for models 𝑅 and 𝑇—is given by

𝑝 | 𝑓 , 𝑐 =
{

𝑓

1 − 𝑓
if 𝑐 = 1
otherwise (8)

𝑓 | 𝑦,𝑦true ∼
{
Uniform(0.5, 1)
Uniform(0, 0.5)

if 𝑦 = 1 or 𝑦true = 1 ∧ 𝑦 = 0
otherwise (9)

𝑐 | 𝑏 ∼
{
Bernoulli(𝑃train)
Bernoulli(𝑃true)

if 𝑏 = 1
otherwise (10)

A.3 Experiments
The parameters for our simulated environment are the positive class
prevalence 𝜋 , model performances on ground-truth and training
labels 𝑃𝑅true, 𝑃

𝑅
train,𝑃

𝑇
true, and 𝑃

𝑇
train, the number of samples 𝑁 , the

region size 𝐾 , and the accuracies and coverages of the marker 𝛼
and 𝛽 resp. and the training labels 𝛼 and 𝛽 resp.. Their default
values, unless specified otherwise, are 𝑃𝑇train = 0.97, 𝑃𝑅train = 0.98,
𝑃𝑇true = 0.95, 𝑃𝑅true = 0.90, 𝜋 = 0.5, 𝛼 = 0.95, 𝛽 = 0.10, 𝐾 = 10000,
and 𝑁 = 1000000. The choices focus our experiments on the most
nefarious case of model evaluation: the training performances are
fixed such that 𝑃𝑇train < 𝑃𝑅train, the opposite of the true difference
on ground-truth labels where 𝑃𝑇true > 𝑃

𝑅
true.

Holding all other parameters to their default values, we explore
the role of the ground-truth model performances 𝑃 (Fig. 2, left),
training label accuracy 𝛼 (Fig. 2, right), positive class prevalence 𝜋
(Fig. 3, left), and region size 𝐾 (Fig. 3, right). In each experiment,
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for a given parameter configuration, we simulate this process for
each of 𝑁 samples, generating true labels, then training labels
and model scores for reference (𝑅) and test (𝑇 ) models, and finally
markers. Using the model scores and markers, we apply the Firenze
framework, and observe the outcomes of the three significance tests
to identify the model with higher ground-truth performance.

Given our goal—to study the minimal requirements of markers—
we repeat this simulation on a fine tiling of marker accuracies
𝛼 ∈ (0, 1) and coverages 𝛽 ∈ (0, 1), and plot the result of each at
the coordinate (𝛼, 𝛽) in each figure panel to follow. The resulting
visualization shows the success, failure, and inconclusive regimes
of the Firenze tests, as a function of the marker’s parameters. In
each figure, each column of panels reflects a certain region/test
(Top-K, Bottom-K, Movers), and row of panels reflects a certain
parameter configuration (annotated accordingly).

Ground-truth model performance. For fixed model perfor-
mances on training data, we varied the model performances on
ground-truth data 𝑃𝑇true and 𝑃

𝑅
true (Fig. 2, left). Relative to the default

model, a larger difference (𝑃𝑇true = 0.95 vs. 𝑃𝑅true = 0.80) with low
generalization error (𝑃𝑇true = 0.95 vs. 𝑃𝑅train = 0.98) increases sensi-
tivity of all tests. A small difference (𝑃𝑇true = 0.95 vs. 𝑃𝑅true = 0.94)
decreases sensitivity of all tests, and to a lesser degree of the
Movers test. The default difference with high generalization error
(𝑃𝑇true = 0.75 vs. 𝑃𝑅true = 0.70) strongly decreases sensitivity of all
tests.

Training label accuracy.We then varied the reliability of train-
ing labels, which in turn varies the generalization errors of our two
models (Fig. 2, right). Because markers are independent of the noise
level in the training labels, this does not impact test sensitivity
for any test nor any accuracy level. We emphasize that the lack
of dependence on training label accuracy underpins the power of
these tests.

Positive class prevalence and region size. Finally, we varied
class prevalences 𝜋 and region sizes 𝐾 to explore dependence on
the sample data balance and size (Fig. 3). As the positive (malicious)
class becomes more rare in the dataset, the Top-K test remains
sensitive, as the top-K samples can still contain adequate sample
counts for both positive and negative classes; the Bottom-K and
Movers Tests both lose sensitivity for the converse reason, as their
samples will be overwhelmingly negative. As the region size 𝐾
decreases (reducing training and evaluation set sizes equally), all
tests lose sensitivity, though least so for the Movers Test.

A.4 Qualitative conditions for successful tests
Varying the parameters of this simulated environment modulates
the sensitivity of the tests in the Firenze framework. Importantly,
none of these regimes bias the tests, therefore as long as the mark-
ers have accuracy 𝛼 > 0.5, Firenze can yield at worst an inconclu-
sive result, at best a success. Qualitatively, we observe that, when
evaluating highly-performant, incrementally-different models (all
𝑃 > 0.9), a single marker with accuracy 𝛼 > 0.7 and coverage
𝛽 > 0.5 can successfully identify the better model with reasonable
probability.

The other parameters we varied suggests a loose “operating
regime” for evaluation with Firenze. Within user control, large(r)
region-of-interest sizes 𝐾 yield more sensitive tests. Outside user

control, low positive-class sample size 𝜋 , significant generaliza-
tion errors 𝑃true ≪ 𝑃train, and/or small differences in ground-truth
performance 𝑃true ≈ 𝑃train yield less sensitive tests, especially for
Top- and Bottom-K Tests. Taken together with the higher sensi-
tivity of the Movers Test throughout, these observations suggest
that regions-of-interest yield successful tests when they have a
heterogeneity of labels, i.e. a propensity for non-zero differences
in marker score to emerge. We are optimistic that future work can
affirm these relationships and insights analytically and provide a
broader theory of evaluative weak signals.

B EVALUATING MALWARE DETECTION
MODELS USING FIRENZE

B.1 Marker design rationale for malware
detection

EMBER includes the following groups of raw data describing PE
files– general properties, header information, import functions,
export functions section information, byte histogram, byte entropy,
and string information. In keeping with our requirement to not use
signals which are used for training as markers, here we [artificially]
split the available data as follows. We used the general information,
sectional header and imports information to design the markers,
while the remaining features were used to train the models. This
split was necessary; we restrict ourselves to the data available in
EMBER for all parts of the experiment to ensure that the study is
replicable. The following markers were designed with these fields:

• Suspicious Section Properties: In a binary, if we have
more than one executable section or we have any sections
that are writable and executable, then the file is likely bad. In
benign files, it is expected that only the .text section will hold
code and be executable. Deviation from this rule of thumb
warrants suspicion. And if a file has sections that are writable
and executable then that can indicate the presence of self
modifying code, which is (malware-like behavior). Thus if a
file has more than one section that is Readable/Executable,
or any sections that are Writeable/Executable then it is likely
malicious.

• Unusual Number of Imported Funtions: Most binaries
import multiple libraries and functions. A very low num-
ber of imports can indicate packing or some other type of
obfuscation. There are exceptions ofcourse; an important
one being managed code (written in .Net) where mscoree.dll
is often the only import. Looking at a random sampling of
benign files we observed that most have on average more
than 100 imported functions. Whereas, looking at samples
of binaries packed with UPX (a common packing utility used
frequently by malware to thwart static analysis and signa-
ture matching) we see 5-25 imports. Thus if a file has less
than 25 import functions, then we deem it as likely malware.

• Nonsensical Section Names: Windows binaries usually
contain multiple sections. Most commonly, one or more
of the following are present. .text, .rdata, .data, .rsrc, .re-
loc. Less frequently, but still prevalent are others like .idata,
.edata, .pdata or CODE. On the other hand, there are section
names that warrant suspicion. For example .UPX (and vari-
ants thereof) are added by UPX. While not all files packed
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Figure 2: Varying difference in model performances 𝑃𝑇true and 𝑃𝑅true (left) and feed accuracies 𝛼 (right). Using the default
simulation parameters as a guide (top, in boxes), in all panels we observe test Success (green) as marker accuracy increases
𝛼 > 0.5 and Failure (red) as marker accuracy decreases 𝛼 < 0.5 (x-axis). The interior region is Inconclusive (yellow), and that
region widens—the test becomes less sensitive—as marker coverage decreases (y-axis). Left, all tests become more (less) sensitive
as the true difference in performance becomes larger (smaller). Right, Test sensitivity does not depend on the accuracy of the
training labels.

with UPX are malware, from past experience, we know
that it is heavily used by malware authors. Additionally,
files with nonsensical section names are also likely to be
malware and not legitimate software. To detect whether
a section name is “nonsensical” we use nostril [reference:
https://joss.theoj.org/papers/10.21105/joss.00596]. If we see
known suspicious section names, or nonsensical section
names in a file, we deem it likely malware.

• Import of suspicious functions: There are certain func-
tions and libraries that are used by binaries to implement
functionality that is likely to be associated with malware.
Thus presence of these functions in the imports of a bi-
nary makes it suspicious. We use the presence of such func-
tions as a test of suspiciousness in this marker. For exam-
ple, process injection which is commonly used by malware
to elevate privileges or access resources belonging to an-
other process exhibits some peculiar function call patterns.
The malware might call a series of Process32First/Next and
Thread32First/Next to identify the process or thread it wants
to inject in and then call VirtualAllocEx to allocate memory
in the remote process. Thus the presence of these functions
in the imports section of a binary makes it suspicious. Of-
course, there are behavior that a malware might exhibit that

will also be common amongst benign files. CreateFile is such
a function that is used broadly by malware and benignware.
Expertise and experience is required to design this marker.
In Appendix A we share a table of the functions we used in
this markers and how they are used by malware.

• Signed: A signed PE file indicates that the file is from a
trusted source and is likely benign. While there are samples
of signed malware (for example, expired certificates stolen
during NVIDIA’s compromise by the Lapsus$ group were
used to sign malware.

B.2 Table of Functions Used in the Suspicious
Imports Marker

Table 3 describes the functions used to define the Suspicious Imports
Marker. The descriptions were obtained from MSDN [7]. Existing
resources like [19] can be used to obtain such a list.

C EVALUATING DOMAIN NAME
REPUTATION MODELS USING FIRENZE

C.1 Marker design rationale for domain
reputation

Recall the seven markers introduced in the main text:
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Figure 3: Varying class prevalence 𝜋 (left) and ROI set size 𝐾 (right; cf. Fig. 2 for how to interpret the panels). Both parameters
have asymmetric effects on the regions. Left, as positive class prevalence decreases, the Bottom-K and Movers Tests lose
sensitivity, while the Top-K gains sensitivity. Right, as region size decreases, all tests uniformly lose sensitivity.

• Abused Domain: If the domain is associated with a curated list
of known-abused domains, then 1, else 0

• Sinkholed Domain: If the domain is associated with a curated
list of known-sinkhole IP addresses, then 1, else 0

• Honeypot Domain: If the domain appears in in-house honeypot
logs, then 1, else 0

• Domain Popularity: If the domain is considered popular based
on query counts, then −1, else 0

• Number of IPs: If the domain maps to more than 50 unique IP
addresses, then −1, else 0

• Number of TTLs: If the domain appears with more than 500
TTLs (Time to Live), then −1, else 0

• Known Future Label: If the domain is labeled malicious in the
future labels, then 1, if it is labeled benign, then −1, else 0

Based on past manual analysis, one interesting signal of mali-
ciousness we found is the associationwith abused top-level domains
(TLDs) and effective second level domain names (e2LD, the smallest
unit of a domain name that can be registered by Internet users).
Owners of these TLDs and e2LDs allow actors to register domain
names for free or minimal cost. Though being related to an abused
TLD is a good signal of suspiciousness, legitimate domains also
exist within these name spaces and not all domains associated with
abused TLDs and e2LDs should be considered malicious. Thus,
while this principle would be bad for labeling domains, it is a great
marker. Another example we use is association of a domain with
a manually curated list of sinkhole IP addresses. Along with ma-
licious markers, we also utilize benign markers. For example, we
expect that highly popular domains based on query counts will
more likely be benign compared to malicious domains. Popularity
itself is not a guarantee of benignity, but a decent signal, and there-
fore is another good marker. Further examples of benign markers

include those domains that resolve to a very high number of IP
addresses with multiple different TTLs (Time To Live) — based on
our observations, these tend to be associated with Content Delivery
Networks (or CDNs) and heavily skew benign. While designing
these markers, we also looked at domains that may resolve to a high
number of IP addresses due to fast-flux behavior (and therefore
are likely malicious), but we observed that the number of unique
IPs observed for those domains over a day were far lower than we
see for domains associated with CDNs. The thresholds for these
markers effectively separate these types of activity. Thus we can
see that designing markers is a combination of domain expertise
verified by data, art and science. Marker functions will return 1
when the marker considers a domain to be likely malicious and -1
when the marker considers a domain to be likely benign. 0 indi-
cates the marker did not vote. It is important to note that in these
experiments, the markers are not used as label sources or features
in training. For example, though we have a manually curated list
of known sinkhole IP addresses and abused TLDs, these are not
used for training as manually maintaining a fully accurate list over
time is challenging and we do not want this model to overfit on
those types of domain names. The Known Future Label marker is
based on what the labels say about a domain one week after the
training time. Usually in the security domain we see that we don’t
have perfect signal about new entities, but within a few days, labels
get updated— whether through manual investigations, correlations,
or gathering external intelligence. Since these are "Future Labels",
they can’t be used for training, but are excellent for evaluation.
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Table 3: Functions Used in the Suspicious Imports Marker

Function Description Tactic or Type of Malware
Associated

createprocessasuser Creates a new process and its primary thread. The new process runs
in the security context of the user represented by the specified token.

Injection

createservice After openscmanager, this is used to create the service which will run
the malware functionality at startup

Persistence

cryptbinarytostring Converts an array of bytes into a formatted string Ransomware
cryptcreatehash Initiates the hashing of a stream of data Ransomware
cryptdestroyhash Destroys the hash object Ransomware
cryptgethashparam Get the hashed value after applying an algorithm Ransomware
crypthashdata The CryptHashData function adds data to a specified hash object Ransomware
encryptfile Encrypt a file or directory Ransomware
getadaptersinfo Used to obtain information about network adapters. Can be recon, or

check for anti-vm functionality
Anti VM Functionality

getforegroundwindow Returns Handle to the window that is in the foreground. Used by
keyloggers to determine which window the user is entering key strokes
into

Keylogger

internetopen Initializes internet access functions from WinINet C2 functionality
mapvirtualkey Translates virtual keycode into a character value Keylogger
process32first Used to enumerate processes by malware prior to injection Process Injection
process32next Used to enumerate processes by malware prior to injection Process Injection
regopenkey Opens a handle to read or edit a registry key which is a common

persistence mechanism
Persistence

regsavekey Saves the specified key and all of its subkeys and values to a new file,
in the standard format.

Persistence

setprop Used by malware to register a property and wait for its invocation to
execute malicious commands.

Process Injection

thread32first Used to enumerate threads prior to injection Process Injection
thread32next Used to enumerate threads prior to injection Process Injection
urldownloadtofile Download a file from a webserver Downloader
virtualallocex Allocates memory in a remote process Process Injection
virtualprotectex Changes the protection on a memory region to make it executable Process Injection
winexec Execute a new program Downloader

C.2 Fine-grained investigations of Results based
on individual markers

We explore two tables of detailed test results here to illustrate how
individual markers can be used to explain and dive deeper into the
results seen in the summary view provided by combined marker
scores. For completeness, we provide all six such tables for 2×3 cases
of 𝐾 = 10k and 100k as well as the three region-based hypothesis
tests.

Looking at the detail view of the Top𝐾 test over 10𝑘 region in
table 4, we see that the average marker score for the malicious
markers (Abused domains and Sinkholed domains) is higher for the
reference model than the test model. The differences pass the statis-
tical significance test. This shows that the test model is finding fewer
likely malicious domains of these types in its K-most-malicious-
domains region than the reference model. We observe a similar
outcome in the Known Future Labels Marker as well, where the
reference mean is higher than the test mean, and the difference is
statistically significant. This implies that the test model is detecting
fewer domains that will be likely labeled malicious in the future
than the reference model. Thus we can say that the test model does

not accomplish our stated goal of increasing detection value. On
the benign marker side (Domain Popularity, Number of IPs and
Number of TTLs), we observe that the Top𝐾 regions of both mod-
els are not significantly different. This implies that there are no
likely benign domains that are deemed highly malicious by either
model. The results from these markers indicate that the real-world
FP rate for the detections from both models are likely to be similar,
and the test model preserves the low-FP quality of the reference
model. With these data points we can show with a high degree of
explainability that the test model is not performing better than the
reference model at scoring malicious domains.

Looking at the malicious markers (Abused domains and Sink-
holed domains) in the detail view of the Bottom𝐾 test results over
the 10𝑘 region in table 5 , we see that the while the means for the
test model are consistently lower than the reference model, often
the averages for both models are close to zero, and not statistically
significant. This implies the FN rate from the benign list generated
by both models will be similar. For the benign markers in the same
test, we see that the test mean is significantly lower than the ref-
erence mean for all markers. This indicates that the test model is
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finding more likely benign domains than the reference model. Thus,
we can once again illustrate our summary result that the test model
is better at scoring benign domains.

Table 4: Top K test (K=10,000)

Marker Avg Marker Score Avg Marker Score p-value Result
Reference Model Test Model

AbusedDomain 0.310569 0.294771 2.07E-02 F
SinkholedDomain 0.062194 0.020898 1.26E-47 F
HoneypotDomain 0 0 NaN U
DomainPopularity 0 0 NaN U
NumberIPs 0 0 NaN U
NumberTTLs 0 0 NaN U
KnownFutureLabel 0.272273 0.217278 6.88E-19 F
CombinedMarkerScore 0.617138 0.516348 4.79E-46 F

Table 5: Bottom K Test (K=10,000)

Marker Avg Marker Score Avg Marker Score p-value Result
Reference Model Test Model

AbusedDomain 0 0 NaN U
SinkholedDomain 0 0 NaN U
HoneypotDomain 0.0001 0 0.241959 U
DomainPopularity -0.1875 -0.7806 0.00E+00 S
NumberIPs -0.2614 -0.669 0.00E+00 S
NumberTTLs -0.0631 -0.3632 0.00E+00 S
KnownFutureLabel -0.4275 -0.7642 0.00E+00 S
CombinedMarkerScore -0.5795 -0.9835 0.00E+00 S

Table 6: Up-Movers and Down-Movers Test (K=10,000)

Marker Avg Marker Score Avg Marker Score p-value Result
Up-Movers Down-Movers

AbusedDomain 0 0 NaN U
SinkholedDomain 0 0 NaN U
HoneypotDomain 0 0 NaN U
DomainPopularity -0.0006 -0.0038 3.44E-06 S
NumberIPs 0 -0.0003 8.90E-02 U
NumberTTLs -0.0006 -0.004 1.35E-06 S
KnownFutureLabel 0.0033 0.0133 4.32E-09 F
CombinedMarkerScore 0.0026 0.0074 1.06E-02 F

Table 7: Top K test (K=100,000)

Marker Avg Marker Score Avg Marker Score p-value Result
Reference Model Test Model

AbusedDomain 0.088239 0.063599 4.39E-95 F
SinkholedDomain 0.237948 0.125499 0.00E+00 F
HoneypotDomain 0 0 NaN U
DomainPopularity -0.00017 -0.00014 3.45E-01 U
NumberIPs 0 -0.00001 2.42E-01 U
NumberTTLs -0.00018 -0.00014 3.11E-01 U
KnownFutureLabel 0.268607 0.235748 2.86E-63 F
CombinedMarkerScore 0.570214 0.405806 0.00E+00 F

Table 8: Bottom K Test (K=100,000)

Marker Avg Marker Score Avg Marker Score p-value Result
Reference Model Test Model

AbusedDomain 0 0 NaN U
SinkholedDomain 0 0.00001 2.42E-01 U
HoneypotDomain 0.00003 0.00002 3.61E-01 U
DomainPopularity -0.23787 -0.49372 0.00E+00 S
NumberIPs -0.16872 -0.19044 6.84E-36 S
NumberTTLs -0.08835 -0.22822 0.00E+00 S
KnownFutureLabel -0.43925 -0.46809 1.46E-37 S
CombinedMarkerScore -0.54655 -0.67804 0.00E+00 S

Table 9: Up-Movers and Down-Movers Test (K=100,000)

Marker Avg Marker Score Avg Marker Score p-value Result
Up-Movers Down-Movers

AbusedDomain 0 0 NaN U
SinkholedDomain 0 0.00002 1.47E-01 U
HoneypotDomain 0 0 NaN U
DomainPopularity -0.00008 -0.00059 1.47E-09 S
NumberIPs -0.00003 -0.00005 3.11E-01 U
NumberTTLs -0.00006 -0.00091 2.62E-17 S
KnownFutureLabel 0.00048 0.00138 2.88E-04 F
CombinedMarkerScore 0.00036 0.00016 2.96E-01 U
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